
Network Simulator

Xiangling Kong, Akshay Navada, Jeffrey Sheik, Xiaowen “Soysauce” Zhang, and Zhiyi Huang

Architecture

 This network simulator operates a discrete time architecture where events are processed in

order and the time is advanced in discrete chunks. An event queue is kept to hold all events experienced

by the simulator. The simulation starts by loading in two files, the topology file and the flow file. The

topology file (with the file extension .top) first defines hosts and routers using “H” to indicate host and

“R” to indicate router followed by the router/host name. Then the links are defined using “L” followed

by the link name, source, destination, link rate in megabytes per second, link delay in milliseconds, and

link buffer size in kilobytes. The flow file (with the file extension .flow) specifies the different flows for

the system.

After these files are loaded into the classes for the links, routers, and hosts, an initial timeout

event is created for each flow. On timeout, each flow sends the packets according to the TCP window by

creating a send packet event at the time each packet is supposed to be sent at. When these events are

triggered, the packets are placed onto the link if the direction is correct and there is space. If not, the

packets are placed onto the buffer and if the buffer is full, the packet is dropped. The action of placing a

packet onto the link simply means that the link’s occupancy is increased and an event is registered for

the arrival of the packet at a time in the future equal to the link delay plus the current time. When the

arrival event is triggered, the simulator checks if the destination is a host or a router. If it is a host, it

generates the ACK packet according to TCP and sends it onto the link again. If it’s a router, it will find the

link it needs to queue the packet onto through the lookup table at each router. This process repeats

until the packet arrives at a host.

We will be using a link state routing algorithm. Each router is initialized with the topology of the

network with the delay as the weight. There is another weight called dynamic weight that is initialized to

zero. This value will be periodically updated by broadcasting packets to its neighbors. Every few hundred

milliseconds, the router updates the link weights it knows and refreshes the time. It then sends a packet

of its current routing table to all neighbors. When a neighbor receives this information, it will update all

weights in its own table that are newer than what it already has. This ensures that old data isn’t getting

passed around by the network. After each link update, Dijkstra’s algorithm is run on the link to update

the routing table. This information is stored as a hash table that maps destination IP address to next

router name for ease of use.

Demonstration 1: TCP Reno

 To demonstrate that TCP Reno works, a simple test network is created as specified in the

example test cases. This test case consists of two hosts connected by a link. A certain amount of

information is sent across and data is logged.

 The following diagram (Figure 1) shows the link rate of the connection over time. As we can see

at the very start, TCP begins with slow start where the rate rapidly increases until it starts to drop

packets. On packet drop (resulting in triple duplicate acks), the window is halved and TCP enters

congestion avoidance where the rate increases linearly until the link starts to drop packets again. This

process repeats until all the data have been sent through the channel. In the second diagram (Figure 2),

the link buffer is show. As we can see, as the link rate increases, the buffer begins to fill more and more

until it becomes full at which it begins to drop packets. In the third diagram (Figure 3), we see that the

window size grows rapidly then grows linearly during congestion avoidance. The size halves whenever a

triple duplicate ack is encountered. One interesting thing to note is that during slow start, the window

size ramps so high that it experiences two triple duplicate acks due to the amount of packets left in the

buffer. Note that these rates are soft averaged in order to smooth it out. In reality, TCP sends packets in

bursts while waiting for acks. This means that with a window size of say 100, in one instance, it may be

able to send 100 kb worth of data but then in the next instance there will only be 6.4 kb worth of data in

the link due to the acks. Even though the link is empty, the client cannot send any more packets since

the acks have not yet been received. This causes the actual graph of the link rate to bounce wildly

between 10 mbps and 640 kbps and thus a smoothing algorithm is used (time average).

Figure 1. Link Rate of TCP Reno

Figure 2. Link Buffer of TCP Reno

0

1000

2000

3000

4000

5000

6000

7000

1

1
.2

3

1
.4

6

1
.6

9

1
.9

2

2
.1

5

2
.3

8

2
.6

1

2
.8

4

3
.0

7

3
.3

3
.5

3

3
.7

6

3
.9

9

4
.2

2

4
.4

5

4
.6

8

4
.9

1

5
.1

4

5
.3

7

5
.6

R
a

te
 (

k
b

p
s)

Time (s)

Link Rate

L1

0

10000

20000

30000

40000

50000

60000

70000

1

1
.2

4

1
.4

8

1
.7

2

1
.9

6

2
.2

2
.4

4

2
.6

8

2
.9

2

3
.1

6

3
.4

3
.6

4

3
.8

8

4
.1

2

4
.3

6

4
.6

4
.8

4

5
.0

8

5
.3

2

5
.5

6

S
iz

e
 (

b
)

Time (s)

Link Buffer

L1

Figure 3. Window Size of TCP Reno

Demonstration 2: Dynamic Routing

 In order to demonstrate dynamic routing, the second diamond shaped topology is used from the

test cases. In this test case, there are two equal paths to reach the second host. A stream of data is sent

between the hosts. In Figure 4, the link rate of the two distinct paths are shown. It can be seen that as

one link fills up, the routers updates and shares their weights which causes the routing algorithm to put

the traffic on the other link instead. As the other link begins to fill up, the routing algorithm switches

again. This is why the graph alternates between blue and red (which represents the two links). Note that

even though routing is in place, the graph still resembles the standard TCP graph showing congestion

control.

Figure 4. Link Rate of Dynamic Routing

0

50

100

150

200

250

300

350

400

1

1
.2

3

1
.4

6

1
.6

9

1
.9

2

2
.1

5

2
.3

8

2
.6

1

2
.8

4

3
.0

7

3
.3

3
.5

3

3
.7

6

3
.9

9

4
.2

2

4
.4

5

4
.6

8

4
.9

1

5
.1

4

5
.3

7

5
.6

S
iz

e
 (

C
o

u
n

t)

Time (s)

Window Size

F1

0

500

1000

1500

2000

2500

3000

3500

4000

0
.5

1
.7

6

3
.0

2

4
.2

8

5
.5

4

6
.8

8
.0

6

9
.3

2

1
0

.5
8

1
1

.8
4

1
3

.1

1
4

.3
6

1
5

.6
2

1
6

.8
8

1
8

.1
4

1
9

.4

2
0

.6
6

2
1

.9
2

2
3

.1
8

2
4

.4
4

2
5

.7

R
a

te
 (

k
b

p
s)

TIme (s)

Link Rate

L1

L2

Demonstration 3: Complex Multi Flow

 To demonstrate multi flow, the third test case is used (all of these test cases can be found in the

data folder). In this test case, there is one main chain of links in which hosts are attached along the way.

Three flows between six hosts are then simulated in this environment. In Figure 5, which shows the link

rates of the three main links (not connecting the router to each host), we can see that it still follows TCP.

Over the times of 35 seconds to 64 seconds, the links becomes very congested as all three hosts are

attempting to transfer data. When one of the transfers ends, the link rate picks back up.

Figure 5. Link Rate of Multi Flow

 Purely looking at link rate is not very helpful; instead we can look at how much each individual

host sends. Figure 6 shows the amount of data the hosts S1, S2, and S3 are sending at each instance in

time.

Figure 6. Host Transmit of Multi Flow

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
.5

5
.4

3

1
0

.3
6

1
5

.2
9

2
0

.2
2

2
5

.1
5

3
0

.0
8

3
5

.0
1

3
9

.9
4

4
4

.8
7

4
9

.8

5
4

.7
3

5
9

.6
6

6
4

.5
9

6
9

.5
2

7
4

.4
5

7
9

.3
8

8
4

.3
1

8
9

.2
4

9
4

.1
7

9
9

.1

R
a

te
 (

k
b

p
s)

Time (s)

Link Rate

L1

L2

L3

0

5

10

15

20

25

30

35

40

0
.5

5
.4

3

1
0

.3
6

1
5

.2
9

2
0

.2
2

2
5

.1
5

3
0

.0
8

3
5

.0
1

3
9

.9
4

4
4

.8
7

4
9

.8

5
4

.7
3

5
9

.6
6

6
4

.5
9

6
9

.5
2

7
4

.4
5

7
9

.3
8

8
4

.3
1

8
9

.2
4

9
4

.1
7

9
9

.1

R
a

te
 (

k
b

)

Time (s)

Host Transmit

S1

S2

S3

 We can see that each flow has its own TCP algorithms. However, the twist is that S2 is using TCP

Tahoe instead of TCP Reno which features a more costly triple duplicate ack. Instead of halving the

window on a triple duplicate ack, it instead resets the window size back down to one. As a result of this,

we can see that the red line (S2) is slightly overshadowed by the other two flows (S1 and S3) and also

takes a bit longer to finish transmitting everything.

 Another interesting graph we can look at is the round trip time. In Figure 7, we see that the RTT

of each flow quickly stabilizes to what it’s supposed to be at with occasional blips on triple duplicate

acks (which results from dropped packets).

Figure 7. RTT of Multi Flow

How to Use

 The application is built in Microsoft Visual Studio Community 2015 which means you need this

software in order to compile it. It’s free and can be found on the Microsoft website. The executable

takes 3 parameters: topology file, flow file, output folder. In the project folder, run.bat specifies an

example execution of the executable in the current directory and looks for the input/output files in the

Data folder. It dumps the output to report.txt of which an example copy (ran with demonstration 3) can

be found in the root folder. The root folder also contains SIM0-SIM2 which is the outputs csv files from

each run.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0
.5

5
.4

3

1
0

.3
6

1
5

.2
9

2
0

.2
2

2
5

.1
5

3
0

.0
8

3
5

.0
1

3
9

.9
4

4
4

.8
7

4
9

.8

5
4

.7
3

5
9

.6
6

6
4

.5
9

6
9

.5
2

7
4

.4
5

7
9

.3
8

8
4

.3
1

8
9

.2
4

9
4

.1
7

9
9

.1

T
im

e
 (

s)

Time (s)

RTT

F1

F2

F3

